STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

SEAC-2011/CR-202/TC-2 Environment department, Room No. 217, 2nd floor, Mantralaya Annexe, Mumbai- 400 032. Date: 3 Faccember, 2016.

To, M/s. Emcure Pharmaceuticals Ltd. Plot No. D-24, MIDC, Kurkumbh, Tal- Daund, Dist- Pune- 413 802.

ECSEIAA -Item NO-11 Meeting NO-103

Subject: Environment clearance for proposed expansion of existing project at Plot No. D-24/24-1, MIDC, Kurkukmbh, Tal.Daund, Dist.Pune by M/s. Emcure Pharmaceuticals Ltd.

Sir,

1

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 112th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 96th & 103rd meetings.

2. It is noted that the proposal is considered by SEAC-I under screening category 5(f) B1 as per EIA Notification 2006.

1.	Name of Project	"Emcure Pharmaceuticals Ltd."
2	Project Proponent	M/s Emcure Pharmaceuticals Ltd
3.	Consultant	Green Circle INC
4	Accreditatio n of consultant (NABET Accreditatio n)	Sr. No. 129 in List 'A' of O.M. of MoEF, GoI, New Delhi Dated 05/12/2015/ Sr. No.72, Dated 08/01/2015
5	New Project / Expansion in existing project/ Modernizati on/ Diversificati on in exiting	Industrial Project (Expansion)

Brief Information of the project submitted by Project Proponent is as:

<u> </u>	mainet	
	project	
	If expansion/	
	Diversificati	
	on, whether	
	environment	
	al clearance	
	has been	
6	obtained for	Yes, copy enclosed as annexure IV
	existing	
	project (If	
	yes, enclose	
	a copy with	
	compliance	
	table)	
	Activity	
7	schedule in	
	the EIA	5 (f)
	Notification	
		• Total plot area (sq. m.): 1,52,212.0m ²
8	Area Details	• Built up area (Sq. m.): Existing:- $17066.22m^2$
Ŭ		Proposed:- $45630.765m^2$
	Name of the	
	Notified	Plot No. D-24/24-1
9	Industrial	MIDC - Kurkumbh, Dist - Pune
	area / MIDC	MIDC – Kurkunon, Dist – Func
	area	
	TOR given	
1	by SEAC?	SEAC –I
Ô	(If yeas then	67 th Agenda
ľ	specify the	27/02/2013
	meeting)	
	Estimated	
	capital cost	
	of the	
1	Project	105 55 Orange (Trainting)
1	(including	195.55 Crores (Existing)
1	cost for land,	350.00 Crores (Proposed)
	building,	
	plant and	
	machinery separately)	
	separatery)	• Latitude:-18 ⁰ 23' 58.75"N
	Location	• Longitude :- 74 ^o 31' 51.78"E
1	details of the	• Location: - Plot No. D-24/24-1
2	project :	MIDC – Kurkumbh, Dist – Pune.
	1J	• Elevation above Mean Sea Level (meters):
	Distance	
1	from	
3	Protected	Not Applicable
	Areas /	
	Critically	

ţ,

	Polluted areas / Eco- sensitive areas / inter-						<u></u>		
	State boundaries								
14	Raw materials (including process chemicals, catalysts, & additives).	List of raw materials to be used Enclosed as a	chem natur mater	e of raw ial '	(to fu	Quantity onnes/ year) Il production pacity	Sou of mat als		Means of transportation (Source to storage site) with justification
1 5	Production details	Name of Products, B products an Intermediat ProductsMain ProductsMain Product By-Product Intermediat ProductsEnclosed as	y d e cts s e	Existing (T/Year)		Proposed acti (new/ modernization expansion)			al (T/Year) (ear)
1 6	Process details / manufacturin g details	Enclosed as an							
17	Rain Water Harvesting (RWH)	 Level of the 0 Size and no o Location of t Size, nos of r Budgetary all 	f RWH he RW echarg	I tank(s) a H tank(s) e pits and	nd (- N Qu	Quantity- NA A antity – 4" X11	t)-10	lacs	& 1.0 Lacs
1 8	Total Water Requirement	 Budgetary allocation (Capital cost and O&M cost)-10 lacs & 1.0 Lacs Total water requirement: Fresh water (CMD): & Source: 612, MIDC Recycled water (CMD): 292 as a treated effluent for green belt Use of the water: Process (CMD): 225.00 Cooling water (CMD): 170.00 Boiler (CMD): 147.00 Cleaning & washing (CMD): 10.00 DM Water (CMD): 10.00 Dust Suppression (CMD):0.00 Drinking (CMD): 5.00 Green belt (CMD):0.00 Fire service (CMD):000 Others (Domestic) (CMD): 45.00 							
1 9	Storm water drainage	 Natural water quantity of sto Size of SWD- 	drainag rm wa 5"	ge pattern ter					
2 0	Sewage generation	 Amount of se Proposed treat 	wage g tment f	eneration for the sew	(CN vage	MD):42			

۲

ι

	and treatment	• Cap	pacity of the S	STP (CMD) (If	appli	cable): N	A			
		Sr. No.	Parameters (pH, BOD, COD, heavy metal, etc)	Inlet effl Characte		Outlet effluent Charact ristic		Effluent discharge standards (CPCB / MPCB			
		1	· · ·		1 00 1 00			0.0	5.5-9.0	WITCD)	
		1 2	pH Suspended solids	1.00-14.00 300-700		5.5 - 5.5		<100		-	
		3	Total Disso solids	lved	3000-50	000	< 210	00	<2100		
2	Effluent	4	Chemical oxygen		4000-6	000	< 25	0	<250		
1	characteristic	5 Biochemical Oxygen demand			3000-4	000	< 10	0	<100		
		6	Chlorides		NS(N Standa		<60	0	< 600		
		7 Sulphates			NS (N Standa	lot	<100)0	< 1000		
		8 Phosphate		NS (Not Standard)		<5		<5			
		9	Oil & Grea	se	NS (N Standa	lot	<1()	<10		
2 2	ETP details		Amount of • Capacity • Amount of • Amount of • Members If yes then	of the of trea of wat ship o	ETP (CM ated effluent ter send to of the CET	1D) : nt rec the C P (If	-300.0 m ³ cycled (CM CETP (CM require): 1	/day /ID): 1 ID): N NA			
2	Note on ETP		tment facility omestic:				Treated a	long	with indu		luent
3	technology to be used	b) In	dustrial:			In secondary treatment of ETP Treated in ETP & Thermal ev					rator
2 4	Disposal of the ETP sludge (If applicable)	1250.	0 MT/Year				system.				
		Sr. N	Source	Type wast		Qty	(TPM)	Disp	oosal	Compo n	sitio
2 5	Disposal of other hazardous wastes (If applicable)	0	Productio n	d arc aliph naph solve or m be fi	taminate omatic, natic or othenic ents may lay not t for e. (20.1)	50N	1T/Y	СН	IWTSDF		

	([F
		2	Productio n	Distillation Residue (20.3)	25MT/Y	CHWTSDF	
		3	Productio n	Process Residues and wastes (28.1)	25MT/Y	CHWTSDF	
		4	Productio n	Spent Carbon (28.2)	60.00MT/Y	CHWTSDF	
		5	Productio n	Date expired discarded & off specification drugs (28.4)	Occasionall y (max.10.5 Mt/Y)	CHWTSDF	
		6	RM Store	Off specification products (28.3)	52MT/Y	CHWTSDF	
		7	Productio n	Spent Organic Solvent (28.5)	7700 MT/Y	Sale to MPCB authorized reprocessor	
		8	Productio n	Spent Oil (5.1)	9600 L/Y	Sale to MPCB authorized reprocessor	
		9	Others like Battery waste, e waste etc (Pl. Specify)	Non Hazardous waste like 1.Papers, empty boxes & Plastic garbage,	60MT/M	Sale to authorized re-processor Sale to bricks manufacturer	
				wood Cleaned drums, carboys, etc. 2. Briquette boiler ash	75MT/M	S	
		© 0	or heavy n precaution What are t	netals then provi ary measures.	de quantity, dis	ubstance/radioac sposal data and p recycling of wa	proposed
		9	Method of	disposal of solid	l waste		
2 6	Atmospheric Emissions (Flue gas characteristic	Sr. 1	No Polli	itant Source o Emissior	i	Concentration i gas (g/m3)	n flue

۲

	1r			· · · · ·				
	s SPM, SO2,	1	SPM					Į
	NOx, CO,	2	SO2					
	etc.)	3	NOx					
		4	CO 5					
		5	Others					
	Stack		Others	I				
27	Stack emission Details: (All the stacks attached to process units, Boilers, captive power plant, D.G. Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to which the stack is attached. e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx etc. should be specified	Plant Section & units 1 2 3 4	Stack No. Boiler 02 numbers (one stand by) DG set 08 numbers Scrubber 24 numbers Dust collector 25 numbers	Height from ground level (m) 32 meter 6.5 From building roof 10 meter 10 meter	Internal Diameter (Top)(m)	Emission Rate	Temp. of Exhaust Gases	
2 8	Emission Standard	Pollutant (SPM, S0 etc)	D2, Stand Limi	dard	Proposed Limit (mg/Nm3)	MPCB ((mg/Nm		

,

2 9	Ambient Air Quality Data	Pollutant	Permissible Standard	Con	posed centrati		arks		
					ug/m3)				
		$\frac{\text{SPM}(\text{PM}_{10})}{\text{RPM}(\text{PM}_{10})}$	≤ 100		100				
		RPM(PM _{2.5}) SO2	≤ 60 ≤ 80		60				
		NOx			<u>80</u> 80			ň.,	
		CO	≤ 80 ≤ 04		<u>80</u> 04				
			12 04		<u>V</u> ++				
3	Details of	Sr. Fuel	Daily			Calorific	%	% Sulph	
0	Fuel to be	No No	Consum	ntion		value	Ash	70 Sulpi	iui
	used:		(TPD/K	-		(Kcals	1.201		
			(22)		/kg			
			Existing	Pro	oosed				
		1 Ga	_					-	
		2 Naph	tha						
		3 HSD	500LPH	800	LPH				
		4 Fuel (Dil						
		5 Coal							
		6 Lignit	te						
		7 Other	FO-	Bric	uette-				
		(Pl.	500LPH	750	KGH				
		specify							
		• Source of f							
			insportation c	of fuel to	site:				
3	Energy	Power supply:							
1		• Existing pow	er requireme	nt•74771	ZW				
		• Proposed po	-						
		DG sets:	wei iequitein	cm. <i>392</i>	/ 12 99				
		• Number and	canacity DG	sets to b	e nsed (existing an	d nron	osed)50	NKVA -
		04 nos. , (1010					a prop	0 00 4). 50	
		Details of the r	ion-conventio	onal ren	ewable	enerov nroi	nosed t	o he used	
3	Green Belt	Existing Green							•
2	Developmen	Proposed Gree			2				
	t	Total Green B							
		 Number and 	species of tre	es to be	planted	:- 3000 No)		
		• Number, size	, age and spe	cies of t	rees to b	be cut, trees	to be t	transplan	ted: A
								-	
				No. of	Sr.No	Vernacu	lar Nan	ne	No. of
		. Nam		species	•	_			Species
		1. Ficu	s 3	90	19	Petrofari	na		150
		2. Naga	amali 6	50	20	Greensee	edia		150
		3. Suna	iri 7	70	21	Putranjiv	'a		105
		4. Jacar	randa 8	80	22	Rain tree	;		120
		5. Kano	han 6	50	23	Butea	mono	osperma	50
			mall		23	(palas)			

,

	r							— ₁				
		6.	Karar		300		24	Bha				158
		7.	Neem	1	300		25	Shi	tas	hok		134
		8.	Mahu	ıdo	140	******	26	Wa	d			170
		9.	Palad	hua	142		27	Kao	Kadamba			180
		10.	Pink	cassia			28	Chinch		ch		140
		11.	Sisan	ı	265	5	30	Bał	cul			80
		12.	Pimp	le	200)	31	Pan	iga	ra		140
		13.	Suru		150)	32	Boo	och			140
		14.	Lages	stoniya	a 14()	33	Bha	awa	1		150
		15.	Gulm	ohar	100)	34	Um	ība	r		15
		16.	Poon	am	80		35	Co	con	ut		10
		17.	Arjun	1	116		36	Bar	nb	00		170
		18.	Akesl	ha	160)	37	Pet	rof	arma		150
33	Details of Pollution Control Systems:	Sr. No.		9	e I Waste	poll com scru coll vem syst ETH Ade mea com leve imp mai leve	Existing pollution control system scrubbers, dust collectors & ventilation system ETP Adequate measures for control of noise levels will be implemented to maintain noise levels		collectors & ventilation system ETP Adequate measures for control of noise levels will be o		ise to	
34	Environment al Management plan Budgetary Allocation	Capital cost (With b O&M cost (With br Sr.N Investment o. Air 1 Air Pollution Control Facilites			(Rs. Adal	dition posed	O & Lakh g 15.00) in	cost (Rs. Addition al proposed 50.00	Total Existin Additi Capit al (Rs. Lakh) 360.0 0	-	
		2	Green	Belt	15.00	25.	00	6.00		10.00	40.00	16.00

	1]		· · · · · · · · · · · · · · · · · · ·					
- - 		3	Laboratory Facility for Monitoring	06.00	2.00	2.00	1.0	08.00	3.00
		4	ETP	250.00	100			350	
		5	Evaporator	200	300	60	60	500	120.0 0
		6	Occupatio nal Health	04.50	1.5	04.00	01.00	6.00	05.00
		7	HWFCOS T	10.00	35.00	20.00	50.00	45.00	70.00
			Total	545.5	763.5	107	172	1309	279
3536	EIA Submitted (If yes then submit the salient features) Public hearing report (If public hearing conducted then submit the salient features) Air	 Detain number Detain number Detain data): Poter Concert Concert Date of the coperative structure Locatere Number 	d of data collec ls of the primar r of visit, etc) F ils of the secon Indian Meteoro ntial hazard and lusion of the E of the public he of the public he of the newspay y) ion of the publi ber of people and ction(s) / Sugge	ry data co Project Sif dary data ological D i mitigation <u>I mitigation</u> <u>I mitiga</u>	Ilection (i collection epartment on measur ich the ad	e. location (i.e. Sour t, es No pote vertisemer	of the sar ce and yea ential hazar	r of data): 	of
7	pollution, water pollution issues in the project area, If any								

3. The proposal has been considered by SEIAA in its 96th & 103rd meetings & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

General Conditions for Pre- construction phase: -

- (i) This environment clearance is issued subject to achieving Zero Liquid Discharge (ZLD).
- (ii) Project Proponent to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
- (iii) No additional land shall be used /acquired for any activity of the project without obtaining proper permission.

- (iv) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured.
- (v) Proper Housekeeping programmers shall be implemented.
- (vi) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
- (vii) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set. (If applicable).
- (viii) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
- (ix) Arrangement shall be made that effluent and storm water does not get mixed.
- (x) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
- (xi) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
- (xii) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.
- (xiii) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
- (xiv) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.
- (xv) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
- (xvi) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- (xvii) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
- (xviii) The company shall undertake following Waste Minimization Measures:
 - Metering of quantities of active ingredients to minimize waste.
 - Reuse of by- products from the process as raw materials or as raw material substitutes in other process.

- Maximizing Recoveries.
- Use of automated material transfer system to minimize spillage.
- (xix) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.
- (xx) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
- (xxi) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department
- (xxii) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in
- (xxiii) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
- (xxiv) A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
- (xxv) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- (xxvi) The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.
- (xxvii) The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.
- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project

proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.

- 5. The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- Validity of Environment Clearance: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF & CC Notification dated 29th April, 2015 to start of production operations.
- 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

Member Secretary, SEIAA.

Copy to:

- 1. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014.
- 2. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.
- 3. Member Secretary, Maharashtra Pollution Control Board, with request to display a copy of the clearance.
- The CCF, Regional Office, Ministry of Environment and Forest (Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi-Shankar Nagar, Bhopal- 462 016). (MP).
- 5. Regional Office, MPCB, Pune.
- 6. Collector, Pune
- 7. IA- Division, Monitoring Cell, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.
- 8. Select file (TC-3)

(EC uploaded on